Перевод: с английского на все языки

со всех языков на английский

lifted off

  • 1 lifted off

    поднял; поднятый

    lifted out — поднял; выносился; поднятый

    English-Russian big medical dictionary > lifted off

  • 2 lifted off

    meluncur

    English-Indonesian dictionary > lifted off

  • 3 lifted-off

    Англо-русский словарь по авиации > lifted-off

  • 4 lifted-off

    English-Russian dictionary of terms that are used in computer games > lifted-off

  • 5 LIFTED OFF THE GROUND

    [A]
    ELATUS (-A -UM)

    English-Latin dictionary > LIFTED OFF THE GROUND

  • 6 huge weight lifted off (smb) shoulders

    Образное выражение: гора упала с плеч

    Универсальный англо-русский словарь > huge weight lifted off (smb) shoulders

  • 7 short step with feet not lifted-off ground

    Сельское хозяйство: низкий ход

    Универсальный англо-русский словарь > short step with feet not lifted-off ground

  • 8 huge weight lifted off shoulders

    Образное выражение: (smb) гора упала с плеч

    Универсальный англо-русский словарь > huge weight lifted off shoulders

  • 9 lifted

    поднимать; поднятый

    lifted off — поднял; поднятый

    lifted out — поднял; выносился; поднятый

    Синонимический ряд:
    1. raised (adj.) aerial; elevated; raised; tall; towering; uplifted; upraised
    2. elevated (verb) boosted; elevated; hoisted; pick up; picked up; raised; reared; take up; took up/taken up; upheld; uplifted; upraised
    3. lifted (verb) animated; buoyed; cheered; elated; exhilarated; inspired; inspirited; lifted; perk up; take off
    4. revoked (verb) dismantled; recalled; repealed; rescinded; reversed; revoked
    5. rose/risen (verb) arose/arisen; ascended; aspired; mounted; rose; rose/risen; soared; upped
    6. stole/stolen (verb) abstracted; annexed; appropriated; collared; filched; hooked; nabbed; nipped; pilfered; pillaged; pinched; pocketed; purloined; stole/stolen; swiped; thieved

    English-Russian base dictionary > lifted

  • 10 lifted

    English-Russian big medical dictionary > lifted

  • 11 lifted out

    поднял; выносился; поднятый

    lifted off — поднял; поднятый

    The English-Russian dictionary general scientific > lifted out

  • 12 take off

    1.смыться, убежать, ""сделать ноги"": — Did you see them good?-No, they took off fast. - Ты их разглядел?—спрашивает комиссар Ле Пешен сержанта Холдуина, подбегая к месту, где только что произошло ограбление и где первым оказался сержант.— Нет,— отвечает Холдуин,— не успел. Они быстро смылись; 2. улетать: Police helicopter look off the ground and lifted straight up.— Полицейский вертолет взлетел и стал резко подниматься вверх; 3. брать выходной, отпрашиваться: My little doughter is sick so I'm gonna take off tomorrow.— Моя дочурка приболела, так что я собираюсь завтра взять отгул.

    English-Russian slang from the book M. Goldenkova "Caution, hot dog" > take off

  • 13 lift a weight off somebody's mind

    снять с души камень

    It lifted a great weight off my mind.

    Англо-русский словарь идиом и фразовых глаголов > lift a weight off somebody's mind

  • 14 Phillips, Horatio Frederick

    SUBJECT AREA: Aerospace
    [br]
    b. 2 February 1845 London, England
    d. 15 July 1926 Hampshire, England
    [br]
    English aerodynamicist whose cambered two-surface wing sections provided the foundations for aerofoil design.
    [br]
    At the age of 19, Phillips developed an interest in flight and constructed models with lightweight engines. He spent a large amount of time and money over many years, carrying out practical research into the science of aerodynamics. In the early 1880s he built a wind tunnel with a working section of 15 in. by 10 in. (38 cm by 25 cm). Air was sucked through the working section by an adaptation of the steam injector used in boilers and invented by Henry Giffard, the airship pioneer. Phillips tested aerofoils based on the cross-section of bird's wings, with a greater curvature on the upper surface than the lower. He measured the lift and drag and showed that the major component of lift came from suction on the upper surface, rather than pressure on the lower. He took out patents for his aerofoil sections in 1884 and 1891. In addition to his wind-tunnel test, Phillips tested his wing sections on a whirling arm, as used earlier by Cayley, Wenham and Lilienthal. After a series of tests using an arm of 15 ft (4.57 m) radius, Phillips built a massive whirling arm driven by a steam engine. His test pieces were mounted on the end of the arm, which had a radius of 50 ft (15.24 m), giving them a linear speed of 70 mph (113 km/h). By 1893 Phillips was ready to put his theories to a more practical test, so he built a large model aircraft driven by a steam engine and tethered to run round a circular track. It had a wing span of 19 ft (5.79 m), but it had fifty wings, one above the other. These wings were only 10 in. (25 cm) wide and mounted in a frame, so it looked rather like a Venetian blind. At 40 mph (64 km/h) it lifted off the track. In 1904 Phillips built a full-size multi-wing aeroplane with twenty wings which just lifted off the ground but did not fly. He built another multi-wing machine in 1907, this time with four Venetian blind' frames in tandem, giving it two hundred wings! Phillips made a short flight of almost 500 ft (152 m) which could be claimed to be the first powered aeroplane flight in England by an Englishman. He retired from flying at the age of 62.
    [br]
    Bibliography
    1900, "Mechanical flight and matters relating thereto", Engineering (reprint).
    1891–3, "On the sustentation of weight by mechanical flight", Aeronautical Society of Great Britain 23rd Report.
    Further Reading
    J.Laurence Pritchard, 1957, "The dawn of aerodynamics", Journal of the Royal Aeronautical Society (March) (good descriptions of Phillips's early work and his wind tunnel).
    F.W.Brearey, 1891–3, "Remarks on experiments made by Horatio Phillips", Aeronautical Society of Great Britain 23rd Report.
    JDS

    Biographical history of technology > Phillips, Horatio Frederick

  • 15 Green, Charles

    SUBJECT AREA: Aerospace
    [br]
    b. 31 January 1785 London, England
    d. 26 March 1870 London, England
    [br]
    English balloonist who introduced the use of coal gas for balloons.
    [br]
    Charles Green lived in London at a time when gas mains were being installed to supply coal gas for the recently introduced gas lighting. He was interested in the exploits of balloonists but lacked the finance needed to construct a balloon and fill it with expensive hydrogen. He decided to experiment with coal gas, which was very much cheaper, albeit a little heavier, than hydrogen: a larger balloon would be needed to lift the same weight. Green made his first ascent on 19 July 1821 to celebrate the coronation of King George. His large balloon was prepared in Green Park, London, and filled from the gas main in Piccadilly. He made a spectacular ascent to 11,000 ft (3,350 m), thus proving the suitability of coal gas, which was readily available and cheap. Like many balloonists, Green was also a showman. He made ascents on horseback or with fireworks to attract spectators. He did, however, try out some new ideas, such as cemented fabric joints (instead of stitching) for a huge new balloon, the Royal Vauxhall. On its first flight, in September 1836, this impressive balloon carried Green plus eight passengers. On 7 November 1836 Green and two friends ascended from Vauxhall Gardens, London, to make a long-distance flight. They landed safely in the Duchy of Nassau, Germany, having covered a record 480 miles (772 km) in eighteen hours. To help control the height of the balloon on this flight, Green fitted a long, heavy rope which trailed on the ground. If the balloon started to rise, then more of the "trail rope" was lifted off the ground, resulting in an increase in the weight to be lifted and a reduction in the rate of ascent. This idea had been suggested earlier by Thomas Baldwin in 1785, but Green developed it and in 1840 proposed to use if for a flight across the Atlantic: he later abandoned this plan.
    Charles Green made over five hundred ascents and died in bed at the age of 85, no small age for a balloonist.
    [br]
    Principal Honours and Distinctions
    Member of the (Royal) Aeronautical Society, founded in 1866.
    Bibliography
    Further Reading
    L.T.C.Rolt, 1966, The Aeronauts, London (provides a full account of Green's achievements).
    T.Monck Mason, 1838, Aeronautica, London.
    JDS

    Biographical history of technology > Green, Charles

  • 16 Adams, William Bridges

    [br]
    b. 1797 Madeley, Staffordshire, England
    d. 23 July 1872 Broadstairs, Kent, England
    [br]
    English inventory particularly of road and rail vehicles and their equipment.
    [br]
    Ill health forced Adams to live abroad when he was a young man and when he returned to England in the early 1830s he became a partner in his father's firm of coachbuilders. Coaches during that period were steered by a centrally pivoted front axle, which meant that the front wheels had to swing beneath the body and were therefore made smaller than the rear wheels. Adams considered this design defective and invented equirotal coaches, built by his firm, in which the front and rear wheels were of equal diameter and the coach body was articulated midway along its length so that the front part pivoted. He also applied himself to improving vehicles for railways, which were developing rapidly then.
    In 1843 he opened his own engineering works, Fairfield Works in north London (he was not related to his contemporary William Adams, who was appointed Locomotive Superintendent to the North London Railway in 1854). In 1847 he and James Samuel, Engineer to the Eastern Counties Railway, built for that line a small steam inspection car, the Express, which was light enough to be lifted off the track. The following year Adams built a broad-gauge steam railcar, the Fairfield, for the Bristol \& Exeter Railway at the insistance of the line's Engineer, C.H.Gregory: self-propelled and passenger-carrying, this was the first railcar. Adams developed the concept further into a light locomotive that could haul two or three separate carriages, and light locomotives built both by his own firm and by other noted builders came into vogue for a decade or more.
    In 1847 Adams also built eight-wheeled coaches for the Eastern Counties Railway that were larger and more spacious than most others of the day: each in effect comprised two four-wheeled coaches articulated together, with wheels that were allowed limited side-play. He also realized the necessity for improvements to railway track, the weakest point of which was the joints between the rails, whose adjoining ends were normally held in common chairs. Adams invented the fishplated joint, first used by the Eastern Counties Railway in 1849 and subsequently used almost universally.
    Adams was a prolific inventor. Most important of his later inventions was the radial axle, which was first applied to the leading and trailing wheels of a 2–4–2 tank engine, the White Raven, built in 1863; Adams's radial axle was the forerunner of all later radial axles. However, the sprung tyres with which White Raven was also fitted (an elastic steel hoop was interposed between wheel centre and tyre) were not perpetuated. His inventiveness was not restricted to engineering: in matters of dress, his adoption, perhaps invention, of the turn-down collar at a time when men conventionally wore standup collars had lasting effect.
    [br]
    Bibliography
    Adams took out some thirty five British patents, including one for the fishplate in 1847. He wrote copiously, as journalist and author: his most important book was English Pleasure Carriages (1837), a detailed description of coachbuilding, together with ideas for railway vehicles and track. The 1971 reprint (Bath: Adams \& Dart) has a biographical introduction by Jack Simmons.
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 1. See also England, George.
    PJGR

    Biographical history of technology > Adams, William Bridges

  • 17 Ader, Clément

    SUBJECT AREA: Aerospace
    [br]
    b. 2 April 1841 Muret, France
    d. 3 May 1925 Toulouse, France
    [br]
    French engineer who made a short "hop" in a powered aeroplane in 1890.
    [br]
    Ader was a distinguished engineer and versatile inventor who was involved with electrical developments, including the telephone and air-cushion vehicles. In the field of aeronautics he became the centre of a long-lasting controversy: did he, or did he not, fly before the Wright brothers' flight of 1903? In 1882 Ader started work on his first aeroplane, the Eole (god of the winds), which was bat-like in appearance and powered by a very well-designed lightweight steam engine developing about 15 kW (20 hp). On 9 October 1890 the Eole was ready, and with Ader as pilot it increased speed over a level surface and lifted off the ground. It was airborne for about 5 seconds and covered some 50 m (164 ft), reaching a height of 20 cm (8 in.). Whether such a short hop constituted a flight has caused much discussion and argument over the years. An even greater controversy followed Ader's claim in 1906 that his third aeroplane (Avion III) had made a flight of 300 m (328 yd) in 1897. He repeated this claim in his book written in 1907, and many historians accepted his account of the "flight". C.H.Gibbs-Smith, an eminent aviation historian, investigated the Ader controversy and in his book published in 1966 came to the conclusion that the Avion III did not fly at all. Avion III was donated to the Museum of the Conservatoire des Arts et Métiers in Paris, and still survives. From 1906 onwards Ader concentrated his inventive efforts elsewhere, but he did mount a successful campaign to persuade the French War Ministry to create an air force.
    [br]
    Principal Honours and Distinctions
    In 1990 the French Government accepted him as the "Father of Aviation who gave wings to the world".
    Bibliography
    1890, patent no. 205, 155 (included a description of the Eole).
    1907, La Première étape de l'aviation militaire en France, Paris (the most significant of his published books and articles).
    Further Reading
    C.H.Gibbs-Smith, 1968, Clément Ader: His Flight Claims and His Place in History, London.
    The centenary of Ader's 1890 flight resulted in several French publications, including: C.Carlier, 1990, L'Affaire Clément Ader: la vérité rétablie, Paris; Pierre Lissarrague, 1990, Clément Ader: inventeur d'avions, Toulouse.
    JDS

    Biographical history of technology > Ader, Clément

  • 18 Maxim, Sir Hiram Stevens

    [br]
    b. 5 February 1840 Brockway's Mills, Maine, USA
    d. 24 November 1916 Streatham, London, England
    [br]
    American (naturalized British) inventor; designer of the first fully automatic machine gun and of an experimental steam-powered aircraft.
    [br]
    Maxim was born the son of a pioneer farmer who later became a wood turner. Young Maxim was first apprenticed to a carriage maker and then embarked on a succession of jobs before joining his uncle in his engineering firm in Massachusetts in 1864. As a young man he gained a reputation as a boxer, but it was his uncle who first identified and encouraged Hiram's latent talent for invention.
    It was not, however, until 1878, when Maxim joined the first electric-light company to be established in the USA, as its Chief Engineer, that he began to make a name for himself. He developed an improved light filament and his electric pressure regulator not only won a prize at the first International Electrical Exhibition, held in Paris in 1881, but also resulted in his being made a Chevalier de la Légion d'honneur. While in Europe he was advised that weapons development was a more lucrative field than electricity; consequently, he moved to England and established a small laboratory at Hatton Garden, London. He began by investigating improvements to the Gatling gun in order to produce a weapon with a faster rate of fire and which was more accurate. In 1883, by adapting a Winchester carbine, he successfully produced a semi-automatic weapon, which used the recoil to cock the gun automatically after firing. The following year he took this concept a stage further and produced a fully automatic belt-fed weapon. The recoil drove barrel and breechblock to the vent. The barrel then halted, while the breechblock, now unlocked from the former, continued rearwards, extracting the spent case and recocking the firing mechanism. The return spring, which it had been compressing, then drove the breechblock forward again, chambering the next round, which had been fed from the belt, as it did so. Keeping the trigger pressed enabled the gun to continue firing until the belt was expended. The Maxim gun, as it became known, was adopted by almost every army within the decade, and was to remain in service for nearly fifty years. Maxim himself joined forces with the large British armaments firm of Vickers, and the Vickers machine gun, which served the British Army during two world wars, was merely a refined version of the Maxim gun.
    Maxim's interests continued to occupy several fields of technology, including flight. In 1891 he took out a patent for a steam-powered aeroplane fitted with a pendulous gyroscopic stabilizer which would maintain the pitch of the aeroplane at any desired inclination (basically, a simple autopilot). Maxim decided to test the relationship between power, thrust and lift before moving on to stability and control. He designed a lightweight steam-engine which developed 180 hp (135 kW) and drove a propeller measuring 17 ft 10 in. (5.44 m) in diameter. He fitted two of these engines into his huge flying machine testrig, which needed a wing span of 104 ft (31.7 m) to generate enough lift to overcome a total weight of 4 tons. The machine was not designed for free flight, but ran on one set of rails with a second set to prevent it rising more than about 2 ft (61 cm). At Baldwyn's Park in Kent on 31 July 1894 the huge machine, carrying Maxim and his crew, reached a speed of 42 mph (67.6 km/h) and lifted off its rails. Unfortunately, one of the restraining axles broke and the machine was extensively damaged. Although it was subsequently repaired and further trials carried out, these experiments were very expensive. Maxim eventually abandoned the flying machine and did not develop his idea for a stabilizer, turning instead to other projects. At the age of almost 70 he returned to the problems of flight and designed a biplane with a petrol engine: it was built in 1910 but never left the ground.
    In all, Maxim registered 122 US and 149 British patents on objects ranging from mousetraps to automatic spindles. Included among them was a 1901 patent for a foot-operated suction cleaner. In 1900 he became a British subject and he was knighted the following year. He remained a larger-than-life figure, both physically and in character, until the end of his life.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'Honneur 1881. Knighted 1901.
    Bibliography
    1908, Natural and Artificial Flight, London. 1915, My Life, London: Methuen (autobiography).
    Further Reading
    Obituary, 1916, Engineer (1 December).
    Obituary, 1916, Engineering (1 December).
    P.F.Mottelay, 1920, The Life and Work of Sir Hiram Maxim, London and New York: John Lane.
    Dictionary of National Biography, 1912–1921, 1927, Oxford: Oxford University Press.
    CM / JDS

    Biographical history of technology > Maxim, Sir Hiram Stevens

  • 19 Robert, Nicolas Louis

    SUBJECT AREA: Paper and printing
    [br]
    b. 2 December 1761 Paris, France
    d. 8 August 1828 Dreux, France
    [br]
    French inventor of the papermaking machine.
    [br]
    Robert was born into a prosperous family and received a fair education, after which he became a lawyer's clerk. In 1780, however, he enlisted in the Army and joined the artillery, serving with distinction in the West Indies, where he fought against the English. When dissatisfied with his prospects, Robert returned to Paris and obtained a post as proof-reader to the firm of printers and publishers owned by the Didot family. They were so impressed with his abilities that they promoted him, c. 1790, to "clerk inspector of workmen" at their paper mill at Essonnes, south of Paris, under the control of Didot St Leger.
    It was there that Robert conceived the idea of a continuous papermaking machine. In 1797 he made a model of it and, after further models, he obtained a patent in 1798. The paper was formed on a continuously revolving wire gauze, from which the sheets were lifted off and hung up to dry. Didot was at first scathing, but he came round to encouraging Robert to make a success of the machine. However, they quarrelled over the financial arrangements and Robert left to try setting up his own mill near Rouen. He failed for lack of capital, and in 1800 he returned to Essonnes and sold his patent to Didot for part cash, part proceeds from the operation of the mill. Didot left for England to enlist capital and technical skills to exploit the invention, while Robert was left in charge at Essonnes. It was the Fourdrinier brothers and Bryan Donkin who developed the papermaking machine into a form in which it could succeed. Meanwhile the mill at Essonnes under Robert's direction had begun to falter and declined to the point where it had to be sold. He had never received the full return from the sale of his patent, but he managed to recover his rights in it. This profited him little, for Didot obtained a patent in France for the Fourdrinier machine and had two examples erected in 1814 and the following year, respectively, neatly side-tracking Robert, who was now without funds or position. To support himself and his family, Robert set up a primary school in Dreux and there passed his remaining years. Although it was the Fourdrinier papermaking machine that was generally adopted, it is Robert who deserves credit for the original initiative.
    [br]
    Further Reading
    R.H.Clapperton, 1967, The Papermaking Machine, Oxford: Pergamon Press, pp. 279–83 (provides a full description of Robert's invention and patent, together with a biography).
    LRD

    Biographical history of technology > Robert, Nicolas Louis

  • 20 Smith, J.

    SUBJECT AREA: Textiles
    [br]
    fl. 1830s Scotland
    [br]
    Scottish inventor of the first endless chain of flats for carding.
    [br]
    Carding by hand required a pair of hand cards. The lump of tangled fibres was teased out by pulling one card across the other to even out the fibres and transfer them onto one of the cards from which they could be rolled up into a rollag or slubbing. When Arkwright began to use cylinder cards, the fibres were teased out as they passed from one cylinder to the next. In order to obtain a greater carding area, he soon introduced smaller cylinders and placed strips of flat card above the periphery of the main cylinder. These became clogged with short fibres and dirt, so they had to be lifted off and cleaned or "stripped" at intervals. The first to invent a self-stripping card was Archibald Buchanan, at the Catrine mills in Ayrshire, with his patent in 1823. In his arrangement each flat was turned upside down and stripped by a rotary brush. This was improved by Smith in 1834 and patented in the same year. Smith fixed the flats on an endless chain so that they travelled around the periphery of the top of the main cylinder. Just after the point where they left the cylinder, Smith placed a rotary brush and a comb to clear the brush. In this way each flat in turn was properly and regularly cleaned.
    Smith was an able mechanic and Managing Partner of the Deanston mills in Scotland. He visited Manchester, where he was warmly received on the introduction of his machine there at about the same time as he patented it in Scotland. The carding engine he designed was complex, for he arranged a double feed to obtain greater production. While this part of his patent was not developed, his chain or endless flats became the basis used in later cotton carding engines. He took out at least half a dozen other patents for textile machinery. These included two in 1834, the first for a self-acting mule and the second with J.C. Dyer for improvements to winding on to spools. There were further spinning patents in 1839 and 1844 and more for preparatory machinery including carding in 1841 and 1842. He was also interested in agriculture and invented a subsoil plough and other useful things.
    [br]
    Bibliography
    1834, British patent no. 6,560 (self-stripping card). 1834, British patent no. 656 (self-acting mule). 1839, British patent no. 8,054.
    1841, British patent no. 8,796 (carding machine). 1842, British patent no. 9,313 (carding machine).
    1844, British patent no. 10,080.
    Further Reading
    E.Leigh, 1875, The Science of Modern Cotton Spinning Manchester (provides a good account of Smith's carding engine).
    W.English, 1969, The Textile Industry, London (covers the development of the carding engine).
    RLH

    Biographical history of technology > Smith, J.

См. также в других словарях:

  • Lifted (music collective) — Lifted is a music collective formed as part of a college project in 1996 by a group of young artists and musicians from the West Midlands, UK. The Group have organised several free festivals including Sounds in the park and other parties. DJ s… …   Wikipedia

  • Lifted or The Story Is in the Soil, Keep Your Ear to the Ground — Studioalbum von Bright Eyes Veröffentlichung August 2002 Label Saddle Creek …   Deutsch Wikipedia

  • Lifted or The Story Is in the Soil, Keep Your Ear to the Ground — Studio album by Bright Eyes Released August 13, 2002 (U.S.) …   Wikipedia

  • Off-roading — A Land Rover Defender 90 off roading Off roading is a term for driving a vehicle on unsurfaced roads or tracks, made of materials such as sand, gravel, riverbeds, mud, snow, rocks, and other natural terrain. Contents 1 …   Wikipedia

  • Lifted (film) — Infobox Film name = Lifted image size = caption = Lifted poster director = Gary Rydstrom producer = Katherine Sarafian Osnat Shurer and John Lasseter (executive producers) writer = Jeff Pideon Max Brace narrator = starring = music = Michael… …   Wikipedia

  • Lifted Music — Infobox record label name = Lifted music founded = 2006 founder = Chris Renegade genre = Drum and bass/ Avant garde country = England location = St Albans url = [http://www.liftedmusic.co.uk] Lifted music is a drum and bass concept label mainly… …   Wikipedia

  • Lifted — Lift Lift (l[i^]ft), v. t. [imp. & p. p. {Lifted}; p. pr. & vb. n. {Lifting}.] [Icel. lypta, fr. lopt air; akin to Sw. lyfta to lift, Dan. l[ o]fte, G. l[ u]ften; prop., to raise into the air. See {Loft}, and cf. 1st {Lift}.] 1. To move in a… …   The Collaborative International Dictionary of English

  • lifted — adj Drunk, intoxicated. Darlene got a little lifted on the rum and fell off the bench. 1980s …   Historical dictionary of American slang

  • lift off — verb depart from the ground The plane took off two hours late • Syn: ↑take off • Derivationally related forms: ↑liftoff, ↑takeoff (for: ↑take off) • …   Useful english dictionary

  • Lift-off (microtechnology) — Lift off process in microstructuring technology is a method of creating structures (patterning) of a target material on the surface of a substrate (ex. wafer) using a sacrificial material.It is an additive technique as opposed to more traditional …   Wikipedia

  • lift off — phrasal verb [intransitive] Word forms lift off : present tense I/you/we/they lift off he/she/it lifts off present participle lifting off past tense lifted off past participle lifted off when an aircraft or space vehicle lifts off, it goes up… …   English dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»